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will happen. Consequently, a forecast that admits to uncertainty seems appro-
priate. Such a forecast gives extra information to people who' may want
to take action in the face of weather threatening their pocketbooks. For
example, suppose that it costs $100 to take preventive measures against a
threatening storm and that the loss if the storm occurs is likely to be about
$300. If the chance of the storm is only 0.1, then the expected loss is $30,
which is less than the cost of the preventive measure; it would be uneconomical
to take steps. But if the chance of the storm were 0.9, the expected loss
is $270, and preventive measures look worthwhile.

The ordinary citizen, deciding whether to go out equipped for rain, will
consider inconvenience versus risk of drenching and find a probability to use
as a cutoff point. Foer example, he may decide to equip for rain when the
probability of rain is 0.5 or higher, otherwise not. -

Probability distributions may be arrived at in various ways. The most
common method is to use the human judgment of an experienced weather
expert. He considers all the evidence and on the basis of his experience
chooses a number-that he thinks expresses the chance of rain. Another way
of generating a probability distribution is to apply statistical methods to
weather data stored in government archives. This essay describes a method
for arriving at such a probability distribution based on the statistical evidence
of past years. '

POSSIBLE FORECASTS

As an example, we may want to estimate at 7:00 am (0700 EST) each
day the probabilities for each of five possible precipitation conditions at Hart-
ford, Connecticut, during the next six hours. The five conditions listed in
Table 1 are: dry, a little rain, a little snow, rain, and snow. The prediction
consists of five numbers, adding to 1.0 and representing the probabilities
of each of the five possible outcomes. For example, the numbers 0.4, 0.2,
0.2, 0.1, 0.1 mean a 40% chance of dry weather, a 209 chance each of
a little rain or snow, and a 10% chance each of substantial rain or snow. The
prediction might group the last four numbers together and report a 60%
precipitation probability. Of .course, one or the other of the five weather
possibilities must occur, and we do not report more than one for the period,
even though we sometimes have “snow changing to rain.”

LEANING ON DATA FROM OTHER PLACES

Meteorologists have found from experience that observing present weather
conditions over a fairly large region enables them to predict future weather
conditions at points within the region. They have not ordinarily made fore-
casts with quantitative probabilities, though “a slight chance of rain” was
a common way of describing a small probability without quantifying it. The
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TasLe 1. Detailed Definition of Five Precipitation Categories for Hartford, Connecticut

CATEGORY CONDITIONS
(1) Dry No precipitation of any kind over the period 0701 EST-1300 EST.
(2) Little

: Rain or freezing rain reported at some time over the period 0701 EST-1300
rain EST in the amount of at least a trace but not more than 0.05 inch. No
snow or sleet reported at any time over this six-hour interval of time.

(3) Little ?now or sleet reported at some time over the period 0701 EST-1300 EST
snow in the amount of at least a trace but not more than 0.05 inch of melted water
equivalent.

(4) Rain Rain or freezing rain reported at some time over the period 0701 EST-
1300 EST In the amount of greater than 0.05 inch. No snow or sleet reported
at any time over this six-hour interval of time,

(5) Snow

§now or sleet reported at some time over the period 0701 EST-1300 EST
in the amount of greater than 0.05 inch of melted water equivalent.

statistical approach, in attempting to refine the meteorologist’s forecast, will
also use data from a fairly large region around the point of interest; iI,l the
case of our example, from weather stations with Hartford Connecticixt con-
siderably east of center because of the weather’s general mc,)vement -frorn, West
to East in the Northern Hemisphere. The dots on the map in Figure 1

FIGURE 1
25-station network
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TapLe 2. 25 Network Locations

Hatteras, N. C.
Jacksonville, Fla.

Sault Ste. Marie, Mich.
Chicago, IlL

Cleveland, O.
Knoxville, Tenn.

Hartford, Conn.
Caribou, Me.
Portland, Me.
Boston, Mass.
Nantucket, Mass.
Burlington, Vt.

Albany, N. Y. New Orléans, La. L

Buffalo, N. Y. Sioux Falls, S. D.

New York, N. Y. Oklahoma City, Okla. '
Syracuse, N. Y. Pocatello, Ida.

Harrisburg, Pa. Tucson, Ariz.

Norfolk, Va. Saint George, Bermuda

Roanoke, Va.

indicate the locations in the network; Table 2 lists the stations in the
network.

VARIABLES USED IN THE FORECAST

Out of the many weather elements observed hourly at each of these locations,
seven were used to characterize the state of the weather at forecast time,
0700 EST. These seven, listed in Table 3, are: barometer reading and its
three-hour change, temperature, moisture, wind direction and velocity, and
cloud cover. They were chosen because as a group they seemed to predict
the weather at least as well as others that were available. The inclusion
of 0700 EST rain or snow conditions would have enhanced the predictions
but they were not among the elements available in this sample study.

As data for developing the procedure we used the 1096 daily 0700 EST
observations of each weather element for the years 1951-53 for all locations.
(These are stored in the U.S. Weather Bureau files in Asheville, North Caro-

TanLe 3. Meteorological Elements

Sea level pressure (millibars)

Past three-hour change in sea level pressure (millibars)
Dry bulb temperature (degrees Fahrenheit)
Temperature-dew point depression (degrees Fahrenheit)
East-West wind component (knots)

North-South wind component (knots)

Total cloud cover (tenths of the sky covered)
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An additional sample of 221 ohservations from 1954 are used in an
independent test of the chosen forecasting procedure, described later.

A typical 0700 EST observation at one of the 25 locations, say, Hatteras,
North Carolina, for one of the 1317 days in the two samples might have

been:
Element Measurement
Sea level pressure 1000.2 millibars
Three-hour pressure change ~—1.0 millibars

Dry-bulb temperature
Dew-point depression 0° Fahrenheit

Wind Northeast at 25 knots
Cloud cover 10/10

55° Fahrenheit

The pressure measurement of 1000.2 millibars (1000.2 % 1000 dynes per -

Square centimeter) indicates low pressure conditions
is 1017 millibars.

A drop in pressure of one milliba
suggesting the approach of even lo
conditions.

The air temperature was observed to be 55° Fahrenheit.
temperature (the temperature at which the air becomes satuy
air temperature were precisely the same
a humid morning.

The wind blew. from the Northeast (45°, at 25 knots. We can, with

a little trigonometry, express the wind in terms of its East-West and North-
South components:

because the normal value

r was observed over the last three hours,
WEr pressure and a worsening of weather

The dew-point
rated) and the
(a zero depression), so that it was

u (East-West component) = 17.68 knots
v (North-South component) = 17.68 knots

On this morning, moist air from over the ocean was carried over Hatteras

generally making for precipitation. A sky cover of ten-tenths of clouds was
also observed, further enhancing the chance of precipitation.

THE STATISTICAL TECHNIQUE

The statistical method used to
tion at Hartford, Connecticut,
analysis.  Elsewhere in this book (see the essay by Howells) the general idea
of discriminant analysis is described. Ordinarily we find several variables,
Or measurements, each of which is related to the presence or absence of the
categories we are predicting—here dry,

a little rain, a little snow, rain, and snow.
Then it may be possible to make, out of the severa] measurements, a single

predict the probability distribution of precipita-

has the technical name of multi_ple discriminant =
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TasLe 4. Selected Predictors in Order of Selection

STATION ELEMENT

Boston, Mass. Total cloud cover

Portland, Me. Past three-hour pressure change
Sault Ste. Marie, Mich. Dry-bulb temperature L
Hartford, Conn. Temperature—dew-point depression
Buffalo, N. Y. Dry-bulb temperature

‘Boston, Mass, East-West wind component
Hatteras, N. C. North-South wind component

Norfolk, Va. Past three-hour pressure change
New York, N. Y. Dry-bulb temperature
Portland, Me. North-South wind component
Nantucket, Mass. North-South wind component
Norfolk, Va. Dry—.bulb temperature
Oklahoma City, Okla. North-South wind component
Caribou, Me. Dry-bulb temperature

Boston, Mass. Dry-bulb temperature

Albany, N. Y. North-South wind component
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Because Hartford is only 100 miles from Boston, cloud cover at the latter
Is a reasonable variable. That temperatures appear as six variables is not
remarkable, though most of us would not have expected a Michigan tempera-
ture to appear so early on the list, even though weather usually moves from
West to East. Having temperatures at a variety of places gives the discrimi-
nant a way of measuring the changing temperatures from one station to an-
other. That changes in the barometer matter is to be expected, but that
the computer would choose stations to the Fast and to the South is not at
all obvious. Lacking a direct measure of 0700 EST rain or snow, the selection
of a moisture variable (dew-point depression) at Hartford seems a very reason-
able choice. The reader will not be surprised to see that among these 16
variables, six measure wind direction and velocity, four at stations near Hart-
ford. The selection of these wind measurements indicates an attempt to in-
clude circulation characteristics as well as the location of weather fronts.

While selecting the 16 variables to be used, the computer also computed

two sets of 16 weights to be attached to them. They are used to give two -

weighted sums, or discriminant functions, to be used as predictors. In princi-
ple, more than two sets of weights could be used, but we stopped with two
because they seemed to wrap up nearly all the information. :

Step 2: Finding the Weights. The discriminants are scores that predict the
weather. The first discriminant forecasts dryness—a high score forecasts very
dry, a low score considerable precipitation—rain or snow. The second dis-
criminant helps forecast the kind of precipitation—high scores implying snow,
low scores rain, middle scores dry; let us call this the snowiness score.

For each historical observation, the numerical score for dryness and the
one for snowiness were plotted on a graph (see Figure 2) and each point
was labeled to show the actual weather that occurred. Once this was done,
we found that the (dryness, snowiness) scores for a given weather, say snow,
clustered around a point and that larger and larger ellipses drawn around
such a central point included more and more of the observations of that
weather. Figure 2 shows ‘all the points corresponding to historical instances
where a little rain fell. It also shows the ellipse that includes 50% of these
points. Each category has such a scatter of points and has a corresponding
ellipse. The choice of this particular ellipse and its orientation are guided
by some calculational considerations we need not go into here.

Figure 3 shows the placement and shape of five ellipses, each of which

contains 50% of the points corresponding to its kind of weather. These -

50% ellipses overlap considerably. The overlap illustrates why one may not
be able to give a simple “it will rain” as a forecast. Only the ellipse for
snow stands a bit off from the others. Remember, these are only 50% ellipses,
so the snow points fall among the others more than Figure 3 may suggest;
nevertheless, “heavy snow” observations are found mostly in the upper left-
hand region of the graph (in and around the ellipse labeled 5). Most of
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FIGURE 3

The ellipses shown encompass
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of the corresponding precipita-
tion categories: (1) dry, (2) a
little rain, (3) a little smow,
(4) rain, (5)snow
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the observations located near the

intersection of the axes (inside ellipse 1)
are for “no precipitation,” :

Step 3: Calculating the Probabilities.
abilities of the precipitation categories
for the 221 independent sample obse
This is accomplished as follows,

As we have seen above, the set of observed conditions of the 16 selected

weather elements at 0700 EST on any particular day corresponds to a point
in Figure 3. The probability of
the point lies. If it lies inside

‘The next step is to calculate the prob-
for each of the 1096 observations and
rvations to be used to test the method.

the ellipse labeled 1, then the probability
that there will be no precipitation within the next six hours will be high,

say, 0.8 or 0.9; whereas if the point lies inside the ellipse labeled 5, the
chances for snow will be high. Naturally, computing the probabhilities requires
a complicated procedure, but we can give the idea if not the exact method.

Suppose, for a moment, our 16 vari
in Figure 3. You could swing a small

circle around that point just large
enough to include, say, 100 of the 1096

historical points. 'Suppose 60 were

" The actual method uses more mathem:
understanding.

In place of providing all of these predicted probabilities, we give two
tables that summarize the predictions of the 1096-case sample (see Table
5) and the 221-case sample (see Table 6). These tables, for particular ranges
of predicted probabilities, include: the number of forecasts F made within

each group of weather conditions and within each range of probability (notice
that across each row the Fs sum to 1

Let us give a few examples of reading Table 5. In row F of the “dry”
group, the first entry tells us that 50 of the 1096 historical points would
have forecast “dry” with probabilities at least 0 but less than 0.1; the next
entry tells us that 80 points would have forecast “dry” with probability at
least 0.1 but less than 0.2, and so on. In row U of the dry group, the
first entry tells us that in 2 of the 50 cases in which we predicted “dry”
with probability between 0 and 0.1, “dry” actually occurred. If we look
at the total U for the “dry” group, we see that, in all, “dry” occurred in
817 of the 1096 observations. Comparing this line with the third gives us
an idea of the comparison between occurrences and probabilities as we pointed

each kind of weather is determined by where

Summary of Probability Predictions (1096-Case Sample)

TABLE 5.
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Summary of Probability Predictions (221-Case Sample)

TABLE 6.
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out in Table 5. On 2 occasions it was actually “dry” when the probability
of “dry” was only between 0 and 0.1. The sum of the computed probabilities
for the 50 cases falling into this category was 2.36. That means the method
forecasts 2.36 instances of dry weather even though it forecasts none of the
50 as likely. The number observed, 2, is very close to the computed count
9.36. The largest discrepancy is in category 5, snow, for probability between
0.3 and 0.4, where there were 9 occurrences Versus 4.3 predicted. By and
large the agreement is good. This shows that we can find 'a way to forecast
the past based on that same past. But wiil the same method work for another

period of time?

.In Table 6, we show the result of applying
991 observations which were not used to

construct the discriminant functions. Again the agreement between the sec-
his validates the method. Thus,

ond and third lines is usually close, and t

Tables 5 and 6 show us a lot about the weather in Hartford and the forecasts.
Seventy-five percent (817/1096) of the time it is dry, 12% (135/1096) of
the time there is some rain, 2% of the time it snows a little, 8% it rains
heavily, and 2% it snows heavily. As for the forecasts, often “dry” can be
predicted with high probability; indeed about half the forecasts are “dry”
with probability greater than 0.9. Because the sum of the probabilities must
be 1.0 for each forecast, it follows that forecasts of low probabiiity can be
given frequently for the other four categories. But it is 2 general feature
of both tables that a specific category of precipitation is never forecast with
probability even as great as 0.8. One requirement for obtaining higher prob-
abilities of these rare events is a much larger data sample. A smaller, more
concentrated ellipse would then be capable of encompassing the 100 or so
sample points needed to estimate the probabilities. :

Step 4: Validating the Approach.

CONCLUDING REMARKS
From the results obtained the following observations can be made:

it can be seen that the horizontal axis orients the
precipitation categories such that larger amounts of precipitation, irrespec-
tive of type, lie to the left, and lower amounts to the right. This is
contrasted with the vertical axis, which appears to “Jiscriminate’” the
snow groups (categories 3 and 5) from the rain groups
and 4).

(2) It may be of interest to know how many corre
made of -the conditions—precipitation or no precipitation—in the test
sample. Taking those situations in which the probability of no precipita-

tion was 0.5 or greater as an arbitrary criterion for categorically predicting
of “no precipitation” was 164

(1) From Figure 3,

(categories 2

ct predictions were

no precipitation, the number of forecasts
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out of 221, with 144 correct. The number of forecasts of “precipitation”
was 57 out of 221 with 46 correct. Altogether there were 190 out of
221 correct, or 86% accurate. This compares favorably with the 957
out of 1096, or 87% for the sample used to develop the relationships.

(3) There appears to be good agreement between U, the number of
observed precipitation events, and 3P, the sum of the probabilities in
each of the five categories in each of the ten columns of Tables -5
and 6. For example, Table 6 shows that for the 21 times that category
2 (light rain) was predicted with a probability from 0.3 to 0.4 the light
rain was observed to happen eight times while its expected number of
Occurrences was 7.28 times. This good agreement can be seen in all
of the independent data results of Table 6. The discrepancies that do
exist can be largely attributed to sampling fluctuations.? o

The method of discriminant analysis has been instrumental in enabling
the prediction of weather probabilities objectively. However, operational
weather prediction utilizing the method requires a computer to do the calcula-
tions.  Alternative discriminant methods have been developed which do not
have such requirements. These alternative methods possess the following
features:

(1) Qualitative as well as quantitative predictors can be used.

(2) Probabilities can be predicted for categories which are not necessarily
mutually exclusive,

(3) More varied shapes of clustered points than those characterized by
simple ellipses can be dealt with.

(4) Operational probabilities can be obtained directly by merely adding
a small set of numbers together.

(5) Large numbers of variables with many sample cases may be processed
with ease.

(6) Results are more easily interpreted.

(7) Missing and erroneous or incomplete data are handled systematically.

Prospects for the future are that discriminant type methods will make
it possible for users to request weather probabilities by telephone and to receive
a voice response directly from a computer.

1Fo'r a detailed exposition of this and one other weather forecasting example using
statxstlc_al methods see R. G. Miller. 1962.  Statistical Prediction by Discriminant
Analysis. Meteorological Monographs, No. 25. Boston: American Meteorological
Society. .



